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Abstract
Males enjoy physical performance advantages over females within competitive sport. The sex-based segregation into male 
and female sporting categories does not account for transgender persons who experience incongruence between their bio-
logical sex and their experienced gender identity. Accordingly, the International Olympic Committee (IOC) determined 
criteria by which a transgender woman may be eligible to compete in the female category, requiring total serum testosterone 
levels to be suppressed below 10 nmol/L for at least 12 months prior to and during competition. Whether this regulation 
removes the male performance advantage has not been scrutinized. Here, we review how differences in biological charac-
teristics between biological males and females affect sporting performance and assess whether evidence exists to support 
the assumption that testosterone suppression in transgender women removes the male performance advantage and thus 
delivers fair and safe competition. We report that the performance gap between males and females becomes significant at 
puberty and often amounts to 10–50% depending on sport. The performance gap is more pronounced in sporting activities 
relying on muscle mass and explosive strength, particularly in the upper body. Longitudinal studies examining the effects of 
testosterone suppression on muscle mass and strength in transgender women consistently show very modest changes, where 
the loss of lean body mass, muscle area and strength typically amounts to approximately 5% after 12 months of treatment. 
Thus, the muscular advantage enjoyed by transgender women is only minimally reduced when testosterone is suppressed. 
Sports organizations should consider this evidence when reassessing current policies regarding participation of transgender 
women in the female category of sport.

Key Points 

Given that biological males experience a substantial per-
formance advantage over females in most sports, there 
is currently a debate whether inclusion of transgender 
women in the female category of sports would compro-
mise the objective of fair and safe competition.

Here, we report that current evidence shows the biologi-
cal advantage, most notably in terms of muscle mass and 
strength, conferred by male puberty and thus enjoyed 
by most transgender women is only minimally reduced 
when testosterone is suppressed as per current sporting 
guidelines for transgender athletes.

This evidence is relevant for policies regarding partici-
pation of transgender women in the female category of 
sport.
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1 Introduction

Sporting performance is strongly influenced by a range of 
physiological factors, including muscle force and power-
producing capacity, anthropometric characteristics, cardi-
orespiratory capacity and metabolic factors [1, 2]. Many 
of these physiological factors differ significantly between 
biological males and females as a result of genetic differ-
ences and androgen-directed development of secondary 
sex characteristics [3, 4]. This confers large sporting per-
formance advantages on biological males over females [5].

When comparing athletes who compete directly against 
one another, such as elite or comparable levels of school-
aged athletes, the physiological advantages conferred by 
biological sex appear, on assessment of performance data, 
insurmountable. Further, in sports where contact, collision 
or combat are important for gameplay, widely different 
physiological attributes may create safety and athlete wel-
fare concerns, necessitating not only segregation of sport 
into male and female categories, but also, for example, 
into weight and age classes. Thus, to ensure that both men 
and women can enjoy sport in terms of fairness, safety and 
inclusivity, most sports are divided, in the first instance, 
into male and female categories.

Segregating sports by biological sex does not account 
for transgender persons who experience incongruence 
between their biological sex and their experienced gen-
der identity, and whose legal sex may be different to that 
recorded at birth [6, 7]. More specifically, transgender 
women (observed at birth as biologically male but identi-
fying as women) may, before or after cross-hormone treat-
ment, wish to compete in the female category. This has 
raised concerns about fairness and safety within female 
competition, and the issue of how to fairly and safely 
accommodate transgender persons in sport has been sub-
ject to much discussion [6–13].

The current International Olympic Committee (IOC) 
policy [14] on transgender athletes states that “it is neces-
sary to ensure insofar as possible that trans athletes are not 
excluded from the opportunity to participate in sporting 
competition”. Yet the policy also states that “the overrid-
ing sporting objective is and remains the guarantee of fair 
competition”. As these goals may be seen as conflicting if 
male performance advantages are carried through to com-
petition in the female category, the IOC concludes that 
“restrictions on participation are appropriate to the extent 
that they are necessary and proportionate to the achieve-
ment of that objective”.

Accordingly, the IOC determined criteria by which 
transgender women may be eligible to compete in the 
female category. These include a solemn declaration that 
her gender identity is female and the maintenance of total 

serum testosterone levels below 10 nmol/L for at least 
12 months prior to competing and during competition [14]. 
Whilst the scientific basis for this testosterone threshold 
was not openly communicated by the IOC, it is surmised 
that the IOC believed this testosterone criterion sufficient 
to reduce the sporting advantages of biological males over 
females and deliver fair and safe competition within the 
female category.

Several studies have examined the effects of testosterone 
suppression on the changing biology, physiology and perfor-
mance markers of transgender women. In this review, we aim 
to assess whether evidence exists to support the assumption 
that testosterone suppression in transgender women removes 
these advantages. To achieve this aim, we first review the 
differences in biological characteristics between biological 
males and females, and examine how those differences affect 
sporting performance. We then evaluate the studies that have 
measured elements of performance and physical capacity 
following testosterone suppression in untrained transgender 
women, and discuss the relevance of these findings to the 
supposition of fairness and safety (i.e. removal of the male 
performance advantage) as per current sporting guidelines.

2  The Biological Basis for Sporting 
Performance Advantages in Males

The physical divergence between males and females begins 
during early embryogenesis, when bipotential gonads are 
triggered to differentiate into testes or ovaries, the tis-
sues that will produce sperm in males and ova in females, 
respectively [15]. Gonad differentiation into testes or ovaries 
determines, via the specific hormone milieu each generates, 
downstream in utero reproductive anatomy development 
[16], producing male or female body plans. We note that in 
rare instances, differences in sex development (DSDs) occur 
and the typical progression of male or female development is 
disrupted [17]. The categorisation of such athletes is beyond 
the scope of this review, and the impact of individual DSDs 
on sporting performance must be considered on their own 
merits.

In early childhood, prior to puberty, sporting participation 
prioritises team play and the development of fundamental 
motor and social skills, and is sometimes mixed sex. Athletic 
performance differences between males and females prior to 
puberty are often considered inconsequential or relatively 
small [18]. Nonetheless, pre-puberty performance differ-
ences are not unequivocally negligible, and could be medi-
ated, to some extent, by genetic factors and/or activation of 
the hypothalamic–pituitary–gonadal axis during the neonatal 
period, sometimes referred to as “minipuberty”. For exam-
ple, some 6500 genes are differentially expressed between 
males and females [19] with an estimated 3000 sex-specific 
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differences in skeletal muscle likely to influence composition 
and function beyond the effects of androgenisation [3], while 
increased testosterone during minipuberty in males aged 
1–6 months may be correlated with higher growth velocity 
and an “imprinting effect” on BMI and bodyweight [20, 21]. 
An extensive review of fitness data from over 85,000 Aus-
tralian children aged 9–17 years old showed that, compared 
with 9-year-old females, 9-year-old males were faster over 
short sprints (9.8%) and 1 mile (16.6%), could jump 9.5% 
further from a standing start (a test of explosive power), 
could complete 33% more push-ups in 30 s and had 13.8% 
stronger grip [22]. Male advantage of a similar magnitude 
was detected in a study of Greek children, where, compared 
with 6-year-old females, 6-year-old males completed 16.6% 
more shuttle runs in a given time and could jump 9.7% 
further from a standing position [23]. In terms of aerobic 
capacity, 6- to 7-year-old males have been shown to have a 
higher absolute and relative (to body mass) VO2max than 6- to 
7-year-old females [24]. Nonetheless, while some biological 
sex differences, probably genetic in origin, are measurable 
and affect performance pre-puberty, we consider the effect of 
androgenizing puberty more influential on performance, and 
have focused our analysis on musculoskeletal differences 
hereafter.

Secondary sex characteristics that develop during puberty 
have evolved under sexual selection pressures to improve 
reproductive fitness and thus generate anatomical divergence 
beyond the reproductive system, leading to adult body types 
that are measurably different between sexes. This phenom-
enon is known as sex dimorphism. During puberty, testes-
derived testosterone levels increase 20-fold in males, but 
remain low in females, resulting in circulating testosterone 
concentrations at least 15 times higher in males than in 
females of any age [4, 25]. Testosterone in males induces 
changes in muscle mass, strength, anthropometric variables 
and hemoglobin levels [4], as part of the range of sexually 
dimorphic characteristics observed in humans.

Broadly, males are bigger and stronger than females. It 
follows that, within competitive sport, males enjoy signifi-
cant performance advantages over females, predicated on 
the superior physical capacity developed during puberty 
in response to testosterone. Thus, the biological effects of 
elevated pubertal testosterone are primarily responsible for 
driving the divergence of athletic performances between 
males and females [4]. It is acknowledged that this diver-
gence has been compounded historically by a lag in the cul-
tural acceptance of, and financial provision for, females in 
sport that may have had implications for the rate of improve-
ment in athletic performance in females. Yet, since the 
1990s, the difference in performance records between males 
and females has been relatively stable, suggesting that bio-
logical differences created by androgenization explain most 
of the male advantage, and are insurmountable [5, 26, 27].

Table 1 outlines physical attributes that are major parame-
ters underpinning the male performance advantage [28–38]. 
Males have: larger and denser muscle mass, and stiffer con-
nective tissue, with associated capacity to exert greater mus-
cular force more rapidly and efficiently; reduced fat mass, 
and different distribution of body fat and lean muscle mass, 
which increases power to weight ratios and upper to lower 
limb strength in sports where this may be a crucial determi-
nant of success; longer and larger skeletal structure, which 
creates advantages in sports where levers influence force 
application, where longer limb/digit length is favorable, and 
where height, mass and proportions are directly responsi-
ble for performance capacity; superior cardiovascular and 
respiratory function, with larger blood and heart volumes, 
higher hemoglobin concentration, greater cross-sectional 
area of the trachea and lower oxygen cost of respiration [3, 4, 
39, 40]. Of course, different sports select for different physi-
ological characteristics—an advantage in one discipline may 
be neutral or even a disadvantage in another—but examina-
tion of a variety of record and performance metrics in any 
discipline reveals there are few sporting disciplines where 
males do not possess performance advantage over females 
as a result of the physiological characteristics affected by 
testosterone.

3  Sports Performance Differences Between 
Males and Females

3.1  An Overview of Elite Adult Athletes

A comparison of adult elite male and female achievements 
in sporting activities can quantify the extent of the male per-
formance advantage. We searched publicly available sports 
federation databases and/or tournament/competition records 
to identify sporting metrics in various events and disciplines, 
and calculated the performance of males relative to females. 
Although not an exhaustive list, examples of performance 
gaps in a range of sports with various durations, physiologi-
cal performance determinants, skill components and force 
requirements are shown in Fig. 1.

The smallest performance gaps were seen in rowing, 
swimming and running (11–13%), with low variation across 
individual events within each of those categories. The 
performance gap increases to an average of 16% in track 
cycling, with higher variation across events (from 9% in the 
4000 m team pursuit to 24% in the flying 500 m time trial). 
The average performance gap is 18% in jumping events 
(long jump, high jump and triple jump). Performance dif-
ferences larger than 20% are generally present when consid-
ering sports and activities that involve extensive upper body 
contributions. The gap between fastest recorded tennis serve 
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Table 1  Selected physical 
difference between untrained/
moderately trained males and 
females. Female levels are set as 
the reference value

Variable Magnitude of sex difference 
(%)

References

Body composition
 Lean body mass 45 Lee et al. [28]
 Fat% − 30

Muscle mass
 Lower body 33 Janssen et al. [29]
 Upper body 40

Muscle strength
 Grip strength 57 Bohannon et al. [30]
 Knee extension peak torque 54 Neder et al. [31]

Anthropometry and bone geometry
 Femur length 9.4 Jantz et al. [32]
 Humerus length 12.0 Brinckmann et al. [33]
 Radius length 14.6
 Pelvic width relative to pelvis height − 6.1

Tendon properties
 Force 83 Lepley et al. [34]
 Stiffness 41

VO2max

 Absolute values 50 Pate et al. [35]
 Relative values 25

Respiratory function
 Pulmonary ventilation (maximal) 48 Åstrand et al. [36]

Cardiovascular function
 Left ventricular mass 31 Åstrand et al. [36]
 Cardiac output (rest) 22 Best et al. [37]
 Cardiac output (maximal) 30 Tong et al. [38]
 Stroke volume (rest) 43
 Stroke volume (maximal) 34
 Hemoglobin concentration 11

Fig. 1  The male performance 
advantage over females across 
various selected sporting 
disciplines. The female level 
is set to 100%. In sport events 
with multiple disciplines, the 
male value has been averaged 
across disciplines, and the error 
bars represent the range of the 
advantage. The metrics were 
compiled from publicly avail-
able sports federation databases 
and/or tournament/competition 
records. MTB mountain bike
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is 20%, while the gaps between fastest recorded baseball 
pitches and field hockey drag flicks exceed 50%.

Sports performance relies to some degree on the magni-
tude, speed and repeatability of force application, and, with 
respect to the speed of force production (power), vertical 
jump performance is on average 33% greater in elite men 
than women, with differences ranging from 27.8% for endur-
ance sports to in excess of 40% for precision and combat 
sports [41]. Because implement mass differs, direct com-
parisons are not possible in throwing events in track and 
field athletics. However, the performance gap is known to 
be substantial, and throwing represents the widest sex dif-
ference in motor performance from an early age [42]. In 
Olympic javelin throwers, this is manifested in differences 
in the peak linear velocities of the shoulder, wrist, elbow 
and hand, all of which are 13–21% higher for male athletes 
compared with females [43].

The increasing performance gap between males and 
females as upper body strength becomes more critical for 
performance is likely explained to a large extent by the 
observation that males have disproportionately greater 
strength in their upper compared to lower body, while 
females show the inverse [44, 45]. This different distribution 
of strength compounds the general advantage of increased 
muscle mass in upper body dominant disciplines. Males also 
have longer arms than females, which allows greater torque 
production from the arm lever when, for example, throwing 
a ball, punching or pushing.

3.2  Olympic Weightlifting

In Olympic weightlifting, where weight categories dif-
fer between males and females, the performance gap is 
between 31 and 37% across the range of competitive body 
weights between 1998 and 2020 (Fig. 1). It is important to 
note that at all weight categories below the top/open cate-
gory, performances are produced within weight categories 

with an upper limit, where strength can be correlated with 
“fighting weight”, and we focused our analysis of perfor-
mance gaps in these categories.

To explore strength–mass relationships further, we 
compared Olympic weightlifting data between equiva-
lent weight categories which, to some extent, limit athlete 
height, to examine the hypothesis that male performance 
advantage may be largely (or even wholly) mediated by 
increased height and lever-derived advantages (Table 2). 
Between 1998 and 2018, a 69 kg category was common 
to both males and females, with the male record holder 
(69 kg, 1.68 m) lifting a combined weight 30.1% heavier 
than the female record holder (69 kg, 1.64 m). Weight cate-
gory changes in 2019 removed the common 69 kg category 
and created a common 55 kg category. The current male 
record holder (55 kg, 1.52 m) lifts 29.5% heavier than the 
female record holder (55 kg, 1.52 m). These comparisons 
demonstrate that males are approximately 30% stronger 
than females of equivalent stature and mass. However, 
importantly, male vs. female weightlifting performance 
gaps increase with increasing bodyweight. For example, in 
the top/open weight category of Olympic weightlifting, in 
the absence of weight (and associated height) limits, maxi-
mum male lifting strength exceeds female lifting strength 
by nearly 40%. This is further manifested in powerlift-
ing, where the male record (total of squat, bench press 
and deadlift) is 65% higher than the female record in the 
open weight category of the World Open Classic Records. 
Further analysis of Olympic weightlifting data shows that 
the 55-kg male record holder is 6.5% stronger than the 
69-kg female record holder (294 kg vs 276 kg), and that 
the 69-kg male record is 3.2% higher than the record held 
in the female open category by a 108-kg female (359 kg vs 
348 kg). This Olympic weightlifting analysis reveals key 
differences between male and female strength capacity. 
It shows that, even after adjustment for mass, biological 
males are significantly stronger (30%) than females, and 

Table 2  Olympic weightlifting 
data between equivalent male–
female and top/open weight 
categories

F female, M male

Sex Weight (kg) Height (m) Combined 
record (kg)

Strength to 
weight ratio

Relative 
performance 
(%)

2019 record in the 55 kg weight-limited category
 Liao Qiuyun F 55 1.52 227 4.13
 Om Yun-chol M 55 1.52 294 5.35 29.5

1998–2018 record in the 69-kg weight-limited category
 Oxsana Slivenko F 69 1.64 276 4.00
 Liao Hui M 69 1.68 359 5.20 30.1

Comparative performances for top/open categories (all time heaviest combined lifts)
 Tatiana Kashirina F 108 1.77 348 3.22
 Lasha Talakhadze M 168 1.97 484 2.88 39.1
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that females who are 60% heavier than males do not over-
come these strength deficits.

3.3  Perspectives on Elite Athlete Performance 
Differences

Figure 1 illustrates the performance gap between adult 
elite males and adult elite females across various sporting 
disciplines and activities. The translation of these advan-
tages, assessed as the performance difference between 
the very best males and very best females, are significant 
when extended and applied to larger populations. In run-
ning events, for example, where the male–female gap is 
approximately 11%, it follows that many thousands of 
males are faster than the very best females. For example, 
approximately 10,000 males have personal best times that 
are faster than the current Olympic 100 m female cham-
pion (World Athletics, personal communication, July 
2019). This has also been described elsewhere [46, 47], 
and illustrates the true effect of an 11% typical difference 
on population comparisons between males and females. 
This is further apparent upon examination of selected jun-
ior male records, which surpass adult elite female perfor-
mances by the age of 14–15 years (Table 3), demonstrat-
ing superior male athletic performance over elite females 
within a few years of the onset of puberty.

These data overwhelmingly confirm that testosterone-
driven puberty, as the driving force of development of 
male secondary sex characteristics, underpins sporting 
advantages that are so large no female could reasonably 
hope to succeed without sex segregation in most sporting 
competitions. To ensure, in light of these analyses, that 
female athletes can be included in sporting competitions in 
a fair and safe manner, most sports have a female category 
the purpose of which is the protection of both fairness 
and, in some sports, safety/welfare of athletes who do not 
benefit from the physiological changes induced by male 
levels of testosterone from puberty onwards.

3.4  Performance Differences in Non‑elite 
Individuals

The male performance advantages described above in ath-
letic cohorts are similar in magnitude in untrained people. 
Even when expressed relative to fat-free weight, VO2max is 
12–15% higher in males than in females [48]. Records of 
lower-limb muscle strength reveal a consistent 50% differ-
ence in peak torque between males and females across the 
lifespan [31]. Hubal et al. [49] tested 342 women and 243 
men for isometric (maximal voluntary contraction) and 
dynamic strength (one-repetition maximum; 1RM) of the 
elbow flexor muscles and performed magnetic resonance 
imaging (MRI) of the biceps brachii to determine cross-
sectional area. The males had 57% greater muscle size, 
109% greater isometric strength, and 89% greater 1RM 
strength than age-matched females. This reinforces the 
finding in athletic cohorts that sex differences in muscle 
size and strength are more pronounced in the upper body.

Recently, sexual dimorphism in arm force and power 
was investigated in a punch motion in moderately-trained 
individuals [50]. The power produced during a punch was 
162% greater in males than in females, and the least pow-
erful man produced more power than the most powerful 
woman. This highlights that sex differences in parameters 
such as mass, strength and speed may combine to pro-
duce even larger sex differences in sport-specific actions, 
which often are a product of how various physical capaci-
ties combine. For example, power production is the prod-
uct of force and velocity, and momentum is defined as 
mass multiplied by velocity. The momentum and kinetic 
energy that can be transferred to another object, such as 
during a tackle or punch in collision and combat sports 
are, therefore, dictated by: the mass; force to accelerate 
that mass, and; resultant velocity attained by that mass. 
As there is a male advantage for each of these factors, the 
net result is likely synergistic in a sport-specific action, 
such as a tackle or a throw, that widely surpasses the sum 
of individual magnitudes of advantage in isolated fitness 
variables. Indeed, already at 17 years of age, the average 
male throws a ball further than 99% of 17-year-old females 
[51], despite no single variable (arm length, muscle mass 
etc.) reaching this numerical advantage. Similarly, punch 
power is 162% greater in men than women even though no 
single parameter that produces punching actions achieves 
this magnitude of difference [50].

Table 3  Selected junior male records in comparison with adult elite 
female records

M meters
Time format: minutes:seconds.hundredths of a second

Event Schoolboy male record Elite female 
(adult) 
record

100 m 10.20 (age 15) 10.49
800 m 1:51.23 (age 14) 1:53.28
1500 m 3:48.37 (age 14) 3:50.07
Long jump 7.85 m (age 15) 7.52 m
Discus throw 77.68 m (age 15) 76.80 m
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4  Is the Male Performance Advantage 
Lost when Testosterone is Suppressed 
in Transgender Women?

The current IOC criteria for inclusion of transgender 
women in female sports categories require testosterone 
suppression below 10 nmol/L for 12 months prior to and 
during competition. Given the IOC’s stated position that 
the “overriding sporting objective is and remains the guar-
antee of fair competition” [14], it is reasonable to assume 
that the rationale for this requirement is that it reduces 
the male performance advantages described previously to 
an acceptable degree, thus permitting fair and safe com-
petition. To determine whether this medical intervention 
is sufficient to remove (or reduce) the male performance 
advantage, which we described above, we performed a 
systematic search of the scientific literature addressing 
anthropometric and muscle characteristics of transgender 
women. Search terms and filtering of peer-reviewed data 
are given in Supplementary Table S1.

4.1  Anthropometrics

Given its importance for the general health of the transgen-
der population, there are multiple studies of bone health, 
and reviews of these data. To summarise, transgender 
women often have low baseline (pre-intervention) bone 
mineral density (BMD), attributed to low levels of physi-
cal activity, especially weight-bearing exercise, and low 
vitamin D levels [52, 53]. However, transgender women 
generally maintain bone mass over the course of at least 
24 months of testosterone suppression. There may even be 
small but significant increases in BMD at the lumbar spine 
[54, 55]. Some retrieved studies present data pertaining to 
maintained BMD in transgender women after many years 
of testosterone suppression. One such study concluded that 
“BMD is preserved over a median of 12.5 years” [56]. 
In support, no increase in fracture rates was observed 
over 12 months of testosterone suppression [54]. Current 
advice, including that from the International Society for 
Clinical Densitometry, is that transgender women, in the 
absence of other risk factors, do not require monitoring of 
BMD [52, 57]. This is explicable under current standard 
treatment regimes, given the established positive effect 
of estrogen, rather than testosterone, on bone turnover in 
males [58].

Given the maintenance of BMD and the lack of a plau-
sible biological mechanism by which testosterone sup-
pression might affect skeletal measurements such as bone 
length and hip width, we conclude that height and skeletal 
parameters remain unaltered in transgender women, and 

that sporting advantage conferred by skeletal size and bone 
density would be retained despite testosterone reductions 
compliant with the IOC’s current guidelines. This is of 
particular relevance to sports where height, limb length 
and handspan are key (e.g. basketball, volleyball, hand-
ball) and where high movement efficiency is advantageous. 
Male bone geometry and density may also provide pro-
tection against some sport-related injuries—for example, 
males have a lower incidence of knee injuries, often attrib-
uted to low quadriceps (Q) angle conferred by a narrow 
pelvic girdle [59, 60].

4.2  Muscle and Strength Metrics

As discussed earlier, muscle mass and strength are key 
parameters underpinning male performance advantages. 
Strength differences range between 30 and 100%, depending 
upon the cohort studied and the task used to assess strength. 
Thus, given the important contribution made by strength to 
performance, we sought studies that have assessed strength 
and muscle/lean body mass changes in transgender women 
after testosterone reduction. Studies retrieved in our litera-
ture search covered both longitudinal and cross-sectional 
analyses. Given the superior power of the former study type, 
we will focus on these.

The pioneer work by Gooren and colleagues, published 
in part in 1999 [61] and in full in 2004 [62], reported the 
effects of 1 and 3 years of testosterone suppression and 
estrogen supplementation in 19 transgender women (age 
18–37  years). After the first year of therapy, testoster-
one levels were reduced to 1 nmol/L, well within typical 
female reference ranges, and remained low throughout the 
study course. As determined by MRI, thigh muscle area 
had decreased by − 9% from baseline measurement. After 
3 years, thigh muscle area had decreased by a further − 3% 
from baseline measurement (total loss of − 12% over 3 years 
of treatment). However, when compared with the baseline 
measurement of thigh muscle area in transgender men (who 
are born female and experience female puberty), transgender 
women retained significantly higher thigh muscle size. The 
final thigh muscle area, after three years of testosterone sup-
pression, was 13% larger in transwomen than in the transmen 
at baseline (p < 0.05). The authors concluded that testos-
terone suppression in transgender women does not reverse 
muscle size to female levels.

Including Gooren and Bunck [62], 12 longitudinal stud-
ies [53, 63–73] have examined the effects of testosterone 
suppression on lean body mass or muscle size in transgen-
der women. The collective evidence from these studies sug-
gests that 12 months, which is the most commonly examined 
intervention period, of testosterone suppression to female-
typical reference levels results in a modest (approximately 
− 5%) loss of lean body mass or muscle size (Table 4). No 
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Table 4  Longitudinal studies of muscle and strength changes in adult transgender women undergoing cross-sex hormone therapy

Studies reporting measures of lean mass, muscle volume, muscle area or strength are included. Muscle/strength data are calculated in refer-
ence to baseline cohort data and, where reported, reference female (or transgender men before treatment) cohort data. Tack et al. [72] was not 
included in the table since some of the participants had not completed full puberty at treatment initiation. van Caenegem et al. [76] reports refer-
ence female values measured in a separately-published, parallel cohort of transgender men
N number of participants, TW transgender women, Yr year, Mo month, T testosterone, E estrogen. ± Standard deviation (unless otherwise indi-
cated in text), LBM lean body mass, ALM appendicular lean mass

Study Participants (age) Therapy Confirmed serum 
testosterone levels

Muscle/strength data Comparison with refer-
ence females

Polderman et al. [73] N = 12 TW 18–36 yr 
(age range)

T suppression + E 
supplementation

< 2 nmol/L at 4 mo LBM
4 mo − 2.2%

LBM
4 mo 16%

Gooren and Bunck 
[62]

N = 19 TW 26 ± 6 yr T suppression + E 
supplementation

≤ 1 nmol/L at 1 and 
3 yr

Thigh area
1 yr − 9% / 3 yr -12%

Thigh area
1 yr 16%/3 yr 13%

Haraldsen et al. [63] N = 12 TW 29 ± 8 yr E supplementation < 10 nmol/L at 3 mo 
and 1 yr

LBM
3 mo/1 yr—small 

changes, unclear 
magnitude

Mueller et al. [64] N = 84 TW 36 ± 11 yr T suppression + E 
supplementation

≤ 1 nmol/L at 1 and 
2 yr

LBM
1 yr − 4%/2 yr − 7%

Wierckx et al. [65] N = 53 TW 31 ± 14 yr T suppression + E 
supplementation

< 10 nmol/L at 1 yr LBM
1 yr − 5%

LBM
1 yr 39%

Van Caenegem et al. 
[53]

(and Van Caenegem 
et al. [76])

N = 49 TW
33 ± 14 yr

T suppression + E 
supplementation

≤ 1 nmol/L at 1 and 
2 yr

LBM
1 yr − 4%/2 yr − 0.5%
Grip strength
1 yr − 7%/2 yr − 9%
Calf area
1 yr − 2%/2 yr − 4%
Forearm area
1 yr − 8%/2 yr − 4%

LBM
1 yr 24%/2 yr 28%
Grip strength
1 yr 26%/2 yr 23%
Calf area
1 yr 16%/2 yr 13%
Forearm area
1 yr 29%/2 yr 34%

Gava et al. [66] N = 40 TW
31 ± 10 yr

T suppression + E 
supplementation

< 5 nmol/L at 6 mo 
and ≤ 1 nmol/L at 
1 yr

LBM
1 yr − 2%

Auer et al. [67] N = 45 TW
35 ± 1 (SE) yr

T suppression + E 
supplementation

< 5 nmol/L at 1 yr LBM
1 yr − 3%

LBM
1 yr 27%

Klaver et al. [68] N = 179 TW
29 (range 18–66)

T suppression + E 
supplementation

≤ 1 nmol/L at 1 yr LBM 1 yr
Total − 3%
Arm region − 6%
Trunk region − 2%
Android region 0%
Gynoid region − 3%
Leg region − 4%

LBM 1 yr
Total 18%
Arm region 28%
Leg region 19%

Fighera et al. [69] N = 46 TW
34 ± 10

E supplementation 
with or without T 
suppression

< 5 nmol/L at 3 mo
≤ 1 nmol/L at 31 mo

ALM
31 mo − 4% from the 

3 mo visit
Scharff et al. [70] N = 249 TW

28 (inter quartile 
range 23–40)

T suppression + E 
supplementation

≤ 1 nmol/L at 1 yr Grip strength
1 yr − 4%

Grip strength
1 yr 21%

Wiik et al. [71] N = 11 TW
27 ± 4

T suppression + E 
supplementation

≤ 1 nmol/L at 4 mo 
and at 1 yr

Thigh volume
1 yr − 5%
Quad area
1 yr − 4%
Knee extension 

strength
1 yr 2%
Knee flexion strength
1 yr 3%

Thigh volume
1 yr 33%
Quad area
26%
Knee extension strength
41%
Knee flexion strength
33%
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study has reported muscle loss exceeding the − 12% found 
by Gooren and Bunck after 3 years of therapy. Notably, stud-
ies have found very consistent changes in lean body mass 
(using dual-energy X-ray absorptiometry) after 12 months 
of treatment, where the change has always been between 
− 3 and − 5% on average, with slightly greater reductions in 
the arm compared with the leg region [68]. Thus, given the 
large baseline differences in muscle mass between males 
and females (Table 1; approximately 40%), the reduction 
achieved by 12 months of testosterone suppression can rea-
sonably be assessed as small relative to the initial superior 
mass. We, therefore, conclude that the muscle mass advan-
tage males possess over females, and the performance impli-
cations thereof, are not removed by the currently studied 
durations (4 months, 1, 2 and 3 years) of testosterone sup-
pression in transgender women. In sports where muscle mass 
is important for performance, inclusion is therefore only pos-
sible if a large imbalance in fairness, and potentially safety 
in some sports, is to be tolerated.

To provide more detailed information on not only gross 
body composition but also thigh muscle volume and con-
tractile density, Wiik et al. [71] recently carried out a com-
prehensive battery of MRI and computed tomography (CT) 
examinations before and after 12 months of successful tes-
tosterone suppression and estrogen supplementation in 11 
transgender women. Thigh volume (both anterior and pos-
terior thigh) and quadriceps cross-sectional area decreased 
− 4 and − 5%, respectively, after the 12-month period, sup-
porting previous results of modest effects of testosterone 
suppression on muscle mass (see Table 4). The more novel 
measure of radiological attenuation of the quadriceps mus-
cle, a valid proxy of contractile density [74, 75], showed no 
significant change in transgender women after 12 months 
of treatment, whereas the parallel group of transgender men 
demonstrated a + 6% increase in contractile density with 
testosterone supplementation.

As indicated earlier (e.g. Table 1), the difference in mus-
cle strength between males and females is often more pro-
nounced than the difference in muscle mass. Unfortunately, 
few studies have examined the effects of testosterone sup-
pression on muscle strength or other proxies of performance 
in transgender individuals. The first such study was pub-
lished online approximately 1 year prior to the release of 
the current IOC policy. In this study, as well as reporting 
changes in muscle size, van Caenegem et al. [53] reported 
that hand-grip strength was reduced from baseline measure-
ments by − 7% and − 9% after 12 and 24 months, respec-
tively, of cross-hormone treatment in transgender women. 
Comparison with data in a separately-published, parallel 
cohort of transgender men [76] demonstrated a retained 
hand-grip strength advantage after 2 years of 23% over 
female baseline measurements (a calculated average of 

baseline data obtained from control females and transgen-
der men).

In a recent multicenter study [70], examination of 249 
transgender women revealed a decrease of − 4% in grip 
strength after 12 months of cross-hormone treatment, with 
no variation between different testosterone level, age or 
BMI tertiles (all transgender women studied were within 
female reference ranges for testosterone). Despite this mod-
est reduction in strength, transgender women retained a 
17% grip strength advantage over transgender men meas-
ured at baseline. The authors noted that handgrip strength in 
transgender women was in approximately the 25th percentile 
for males but was over the 90th percentile for females, both 
before and after hormone treatment. This emphasizes that 
the strength advantage for males over females is inherently 
large. In another study exploring handgrip strength, albeit 
in late puberty adolescents, Tack et al. noted no change in 
grip strength after hormonal treatment (average duration 
11 months) of 21 transgender girls [72].

Although grip strength provides an excellent proxy meas-
urement for general strength in a broad population, specific 
assessment within different muscle groups is more valu-
able in a sports-specific framework. Wiik et al., [71] having 
determined that thigh muscle mass reduces only modestly, 
and that no significant changes in contractile density occur 
with 12 months of testosterone suppression, provided, for 
the first time, data for isokinetic strength measurements of 
both knee extension and knee flexion. They reported that 
muscle strength after 12 months of testosterone suppression 
was comparable to baseline strength. As a result, transgender 
women remained about 50% stronger than both the group 
of transgender men at baseline and a reference group of 
females. The authors suggested that small neural learning 
effects during repeated testing may explain the apparent lack 
of small reductions in strength that had been measured in 
other studies [71].

These longitudinal data comprise a clear pattern of very 
modest to negligible changes in muscle mass and strength 
in transgender women suppressing testosterone for at least 
12 months. Muscle mass and strength are key physical 
parameters that constitute a significant, if not majority, por-
tion of the male performance advantage, most notably in 
those sports where upper body strength, overall strength, and 
muscle mass are crucial determinants of performance. Thus, 
our analysis strongly suggests that the reduction in testoster-
one levels required by many sports federation transgender 
policies is insufficient to remove or reduce the male advan-
tage, in terms of muscle mass and strength, by any mean-
ingful degree. The relatively consistent finding of a minor 
(approximately − 5%) muscle loss after the first year of treat-
ment is also in line with studies on androgen-deprivation 
therapy in males with prostate cancer, where the annual loss 
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of lean body mass has been reported to range between − 2 
and − 4% [77].

Although less powerful than longitudinal studies, we 
identified one major cross-sectional study that meas-
ured muscle mass and strength in transgender women. 
In this study, 23 transgender women and 46 healthy age- 
and height-matched control males were compared [78]. 
The transgender women were recruited at least 3 years 
after sex reassignment surgery, and the mean duration of 
cross-hormone treatment was 8 years. The results showed 
that transgender women had 17% less lean mass and 25% 
lower peak quadriceps muscle strength than the control 
males [78]. This cross-sectional comparison suggests that 
prolonged testosterone suppression, well beyond the time 
period mandated by sports federations substantially reduces 
muscle mass and strength in transgender women. However, 
the typical gap in lean mass and strength between males and 
females at baseline (Table 1) exceeds the reductions reported 
in this study [78]. The final average lean body mass of the 
transgender women was 51.2 kg, which puts them in the 90th 
percentile for women [79]. Similarly, the final grip strength 
was 41 kg, 25% higher than the female reference value [80]. 
Collectively, this implies a retained physical advantage even 
after 8 years of testosterone suppression. Furthermore, given 
that cohorts of transgender women often have slightly lower 
baseline measurements of muscle and strength than control 
males [53], and baseline measurements were unavailable for 
the transgender women of this cohort, the above calculations 
using control males reference values may be an overestimate 
of actual loss of muscle mass and strength, emphasizing both 
the need for caution when analyzing cross-sectional data in 
the absence of baseline assessment and the superior power 
of longitudinal studies quantifying within-subject changes.

4.3  Endurance Performance and Cardiovascular 
Parameters

No controlled longitudinal study has explored the effects of 
testosterone suppression on endurance-based performance. 
Sex differences in endurance performance are generally 
smaller than for events relying more on muscle mass and 
explosive strength. Using an age grading model designed 
to normalize times for masters/veteran categories, Harper 
[81] analyzed self-selected and self-reported race times for 
eight transgender women runners of various age categories 
who had, over an average 7 year period (range 1–29 years), 
competed in sub-elite middle and long distance races within 
both the male and female categories. The age-graded scores 
for these eight runners were the same in both categories, 
suggesting that cross-hormone treatment reduced running 
performance by approximately the size of the typical male 
advantage. However, factors affecting performances in the 
interim, including training and injury, were uncontrolled 

for periods of years to decades and there were uncertainties 
regarding which race times were self-reported vs. which race 
times were actually reported and verified, and factors such as 
standardization of race course and weather conditions were 
unaccounted for. Furthermore, one runner improved sub-
stantially post-transition, which was attributed to improved 
training [81]. This demonstrates that performance decrease 
after transition is not inevitable if training practices are 
improved. Unfortunately, no study to date has followed up 
these preliminary self-reports in a more controlled setting, 
so it is impossible to make any firm conclusions from this 
data set alone.

Circulating hemoglobin levels are androgen-dependent 
[82] and typically reported as 12% higher in males compared 
with females [4]. Hemoglobin levels appear to decrease by 
11–14% with cross-hormone therapy in transgender women 
[62, 71], and indeed comparably sized reductions have 
been reported in athletes with DSDs where those athletes 
are sensitive to and been required to reduce testosterone 
[47, 83]. Oxygen-carrying capacity in transgender women 
is most likely reduced with testosterone suppression, with 
a concomitant performance penalty estimated at 2–5% for 
the female athletic population [83]. Furthermore, there is a 
robust relationship between hemoglobin mass and VO2max 
[84, 85] and reduction in hemoglobin is generally associ-
ated with reduced aerobic capacity [86, 87]. However, 
hemoglobin mass is not the only parameter contributing to 
VO2max, where central factors such as total blood volume, 
heart size and contractility, and peripheral factors such as 
capillary supply and mitochondrial content also plays a role 
in the final oxygen uptake [88]. Thus, while a reduction in 
hemoglobin is strongly predicted to impact aerobic capacity 
and reduce endurance performance in transgender women, 
it is unlikely to completely close the baseline gap in aerobic 
capacity between males and females.

The typical increase in body fat noted in transgender 
women [89, 90] may also be a disadvantage for sporting 
activities (e.g. running) where body weight (or fat distribu-
tion) presents a marginal disadvantage. Whether this body 
composition change negatively affects performance results 
in transgender women endurance athletes remains unknown. 
It is unclear to what extent the expected increase in body fat 
could be offset by nutritional and exercise countermeasures, 
as individual variation is likely to be present. For example, 
in the Wiik et al. study [71], 3 out of the 11 transgender 
women were completely resistant to the marked increase in 
total adipose tissue noted at the group level. This inter-indi-
vidual response to treatment represents yet another challenge 
for sports governing bodies who most likely, given the many 
obstacles with case-by-case assessments, will form policies 
based on average effect sizes.

Altogether, the effects of testosterone suppression 
on performance markers for endurance athletes remain 
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insufficiently explored. While the negative effect on hemo-
globin concentration is well documented, the effects on 
VO2max, left ventricular size, stroke volume, blood volume, 
cardiac output lactate threshold, and exercise economy, all 
of which are important determinants of endurance perfor-
mance, remain unknown. However, given the plausible dis-
advantages with testosterone suppression mentioned in this 
section, together with the more marginal male advantage 
in endurance-based sports, the balance between inclusion 
and fairness is likely closer to equilibrium in weight-bearing 
endurance-based sports compared with strength-based sports 
where the male advantage is still substantial.

5  Discussion

The data presented here demonstrate that superior anthro-
pometric, muscle mass and strength parameters achieved by 
males at puberty, and underpinning a considerable portion 
of the male performance advantage over females, are not 
removed by the current regimen of testosterone suppression 
permitting participation of transgender women in female 
sports categories. Rather, it appears that the male perfor-
mance advantage remains substantial. Currently, there is no 
consensus on an acceptable degree of residual advantage 
held by transgender women that would be tolerable in the 
female category of sport. There is significant dispute over 
this issue, especially since the physiological determinants 
of performance vary across different sporting disciplines. 
However, given the IOC position that fair competition is 
the overriding sporting objective [14], any residual advan-
tage carried by transgender women raises obvious concerns 
about fair and safe competition in the numerous sports 
where muscle mass, strength and power are key performance 
determinants.

5.1  Perspectives on Athletic Status of Transgender 
Women

Whilst available evidence is strong and convincing that 
strength, skeletal- and muscle-mass derived advantages will 
largely remain after cross-hormone therapy in transgender 
women, it is acknowledged that the findings presented here 
are from healthy adults with regular or even low physical 
activity levels [91], and not highly trained athletes. Thus, fur-
ther research is required in athletic transgender populations.

However, despite the current absence of empirical evi-
dence in athletic transgender women, it is possible to 
evaluate potential outcomes in athletic transgender women 
compared with untrained cohorts.  The first possibility 
is that athletic transgender women will experience simi-
lar reductions (approximately − 5%) in muscle mass and 
strength as untrained transgender women, and will thus 

retain significant advantages over a comparison group of 
females. As a result of higher baseline characteristics in 
these variables, the retained advantage may indeed be even 
larger. A second possibility is that by virtue of greater mus-
cle mass and strength at baseline, pre-trained transgender 
women will experience larger relative decreases in muscle 
mass and strength if they converge with untrained transgen-
der women, particularly if training is halted during transi-
tion. Finally, training before and during the period of testos-
terone suppression may attenuate the anticipated reductions, 
such that relative decreases in muscle mass and strength 
will be smaller or non-existent in transgender women who 
undergo training, compared to untrained (and non-training) 
controls.

It is well established that resistance training counteracts 
substantial muscle loss during atrophy conditions that are 
far more severe than testosterone suppression. For exam-
ple, resistance exercise every third day during 90-days bed 
rest was sufficient to completely offset the 20% reduction 
in knee extensor muscle size noted in the resting control 
subjects [92]. More relevant to the question of transgender 
women, however, is to examine training effects in studies 
where testosterone has been suppressed in biological males. 
Kvorning et al. investigated, in a randomized placebo-con-
trolled trial, how suppression of endogenous testosterone 
for 12 weeks influenced muscle hypertrophy and strength 
gains during a training program (3 days/week) that took 
place during the last 8 weeks of the 3-month suppression 
period [93]. Despite testosterone suppression to female lev-
els of 2 nmol/L, there was a significant + 4% increase in leg 
lean mass and a + 2% increase in total lean body mass, and 
a measurable though insignificant increase in isometric knee 
extension strength. Moreover, in select exercises used dur-
ing the training program, 10RM leg press and bench press 
increased + 32% and + 17%, respectively. While some of the 
training adaptations were lower than in the placebo group, 
this study demonstrates that training during a period of tes-
tosterone suppression not only counteracts muscle loss, but 
can actually increase muscle mass and strength.

Males with prostate cancer undergoing androgen depri-
vation therapy provide a second avenue to examine train-
ing effects during testosterone suppression. Testosterone 
levels are typically reduced to castrate levels, and the loss 
of lean mass has typically ranged between − 2 and − 4% per 
year [77], consistent with the findings described previously 
in transgender women. A recent meta-analysis concluded 
that exercise interventions including resistance exercise 
were generally effective for maintaining muscle mass and 
increasing muscle strength in prostate cancer patients under-
going androgen deprivation therapy [94]. It is important to 
emphasize that the efficacy of the different training programs 
may vary. For example, a 12-week training study of prostate 
cancer patients undergoing androgen deprivation therapy 
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included drop-sets to combine heavy loads and high volume 
while eliciting near-maximal efforts in each set [95]. This 
strategy resulted in significantly increased lean body mass 
(+ 3%), thigh muscle volume (+ 6%), knee extensor 1RM 
strength (+ 28%) and leg press muscle endurance (+ 110%).

In addition to the described effects of training during tes-
tosterone suppression, the effect of training prior to testos-
terone suppression may also contribute to the attenuation 
of any muscle mass and strength losses, via a molecular 
mechanism referred to as ‘muscle memory’ [96]. Specifi-
cally, it has been suggested that myonuclei acquired by 
skeletal muscle cells during training are maintained during 
subsequent atrophy conditions [97]. Even though this model 
of muscle memory has been challenged recently [98], it may 
facilitate an improved training response upon retraining [99]. 
Mechanistically, the negative effects of testosterone suppres-
sion on muscle mass are likely related to reduced levels of 
resting protein synthesis [100], which, together with protein 
breakdown, determines the net protein balance of skeletal 
muscle. However, testosterone may not be required to elicit a 
robust muscle protein synthesis response to resistance exer-
cise [100]. Indeed, relative increases in muscle mass in men 
and women from resistance training are comparable, despite 
marked differences in testosterone levels [101], and the acute 
rise in testosterone apparent during resistance exercise does 
not predict muscle hypertrophy nor strength gains [102]. 
This suggests that even though testosterone is important for 
muscle mass, especially during puberty, the maintenance 
of muscle mass through resistance training is not crucially 
dependent on circulating testosterone levels.

Thus, in well-controlled studies in biological males who 
train while undergoing testosterone reduction, training 
is protective of, and may even enhance, muscle mass and 
strength attributes. Considering transgender women ath-
letes who train during testosterone suppression, it is plau-
sible to conclude that any losses will be similar to or even 
smaller in magnitude than documented in the longitudinal 
studies described in this review. Furthermore, pre-trained 
transgender women are likely to have greater muscle mass 
at baseline than untrained transgender women; it is possi-
ble that even with the same, rather than smaller, relative 
decreases in muscle mass and strength, the magnitude of 
retained advantage will be greater. In contrast, if pre-trained 
transgender women undergo testosterone suppression while 
refraining from intense training, it appears likely that muscle 
mass and strength will be lost at either the same or greater 
rate than untrained individuals, although there is no rationale 
to expect a weaker endpoint state. The degree of change in 
athletic transgender women is influenced by the athlete’s 
baseline resistance-training status, the efficacy of the imple-
mented program and other factors such as genetic make-up 
and nutritional habits, but we argue that it is implausible that 

athletic transgender women would achieve final muscle mass 
and strength metrics that are on par with reference females 
at comparable athletic level.

5.2  The Focus on Muscle Mass and Strength

We acknowledge that changes in muscle mass are not always 
correlated in magnitude to changes in strength measure-
ments because muscle mass (or total mass) is not the only 
contributor to strength [103]. Indeed, the importance of the 
nervous system, e.g. muscle agonist activation (recruitment 
and firing frequency) and antagonist co-activation, for mus-
cle strength must be acknowledged [104]. In addition, factors 
such as fiber types, biomechanical levers, pennation angle, 
fascicle length and tendon/extracellular matrix composition 
may all influence the ability to develop muscular force [105]. 
While there is currently limited to no information on how 
these factors are influenced by testosterone suppression, the 
impact seems to be minute, given the modest changes noted 
in muscle strength during cross-hormone treatment.

It is possible that estrogen replacement may affect the 
sensitivity of muscle to anabolic signaling and have a pro-
tective effect on muscle mass [106] explaining, in part, the 
modest change in muscle mass with testosterone suppression 
and accompanying cross-hormone treatment. Indeed, this is 
supported by research conducted on estrogen replacement 
therapy in other targeted populations [107, 108] and in sev-
eral different animal models, including mice after gonadec-
tomy [109] and ovariectomy [110].

In terms of other performance proxies relevant to sports 
performance, there is no research evaluating the effects of 
transgender hormone treatment on factors such as agility, 
jumping or sprint performance, competition strength perfor-
mance (e.g. bench press), or discipline-specific performance. 
Other factors that may impact sports performance, known 
to be affected by testosterone and some of them measurably 
different between males and females, include visuospatial 
abilities, aggressiveness, coordination and flexibility.

5.3  Testosterone‑Based Criteria for Inclusion 
of Transgender Women in Female Sports

The appropriate testosterone limit for participation of 
transgender women in the female category has been a matter 
of debate recently, where sports federations such as World 
Athletics recently lowered the eligibility criterion of free 
circulating testosterone (measured by means of liquid chro-
matography coupled with mass spectrometry) to < 5 nmol/L. 
This was based, at least in part, on a thorough review by 
Handelsman et al. [4], where the authors concluded that, 
given the nonoverlapping distribution of circulating testos-
terone between males and females, and making an allowance 
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for females with mild hyperandrogenism (e.g. with poly-
cystic ovary syndrome), the appropriate testosterone limit 
should be 5 rather than 10 nmol/L.

From the longitudinal muscle mass/strength studies sum-
marised here, however, it is apparent that most therapeutic 
interventions result in almost complete suppression of tes-
tosterone levels, certainly well below 5 nmol/L (Table 4). 
Thus, with regard to transgender women athletes, we ques-
tion whether current circulating testosterone level cut-off 
can be a meaningful decisive factor, when in fact not even 
suppression down to around 1 nmol/L removes the anthro-
pometric and muscle mass/strength advantage in any sig-
nificant way.

In terms of duration of testosterone suppression, it may 
be argued that although 12  months of treatment is not 
sufficient to remove the male advantage, perhaps extend-
ing the time frame of suppression would generate greater 
parity with female metrics. However, based on the studies 
reviewed here, evidence is lacking that this would diminish 
the male advantage to a tolerable degree. On the contrary, 
it appears that the net loss of lean mass and grip strength is 
not substantially decreased at year 2 or 3 of cross-hormone 
treatment (Table 4), nor evident in cohorts after an average 
8 years after transition. This indicates that a plateau or a new 
steady state is reached within the first or second year of treat-
ment, a phenomenon also noted in transgender men, where 
the increase in muscle mass seems to stabilise between the 
first and the second year of testosterone treatment [111].

6  Conclusions

We have shown that under testosterone suppression 
regimes typically used in clinical settings, and which 
comfortably exceed the requirements of sports federations 
for inclusion of transgender women in female sports cat-
egories by reducing testosterone levels to well below the 
upper tolerated limit, evidence for loss of the male perfor-
mance advantage, established by testosterone at puberty 
and translating in elite athletes to a 10–50% performance 
advantage, is lacking. Rather, the data show that strength, 
lean body mass, muscle size and bone density are only 
trivially affected. The reductions observed in muscle mass, 
size, and strength are very small compared to the baseline 
differences between males and females in these variables, 
and thus, there are major performance and safety implica-
tions in sports where these attributes are competitively sig-
nificant. These data significantly undermine the delivery 
of fairness and safety presumed by the criteria set out in 
transgender inclusion policies, particularly given the stated 
prioritization of fairness as an overriding objective (for the 
IOC). If those policies are intended to preserve fairness, 

inclusion and the safety of biologically female athletes, 
sporting organizations may need to reassess their policies 
regarding inclusion of transgender women.

From a medical-ethical point of view, it may be ques-
tioned as to whether a requirement to lower testosterone 
below a certain level to ensure sporting participation 
can be justified at all. If the advantage persists to a large 
degree, as evidence suggests, then a stated objective of 
targeting a certain testosterone level to be eligible will not 
achieve its objective and may drive medical practice that 
an individual may not want or require, without achieving 
its intended benefit.

The research conducted so far has studied untrained 
transgender women. Thus, while this research is impor-
tant to understand the isolated effects of testosterone 
suppression, it is still uncertain how transgender women 
athletes, perhaps undergoing advanced training regimens 
to counteract the muscle loss during the therapy, would 
respond. It is also important to recognize that performance 
in most sports may be influenced by factors outside mus-
cle mass and strength, and the balance between inclu-
sion, safety and fairness therefore differs between sports. 
While there is certainly a need for more focused research 
on this topic, including more comprehensive performance 
tests in transgender women athletes and studies on train-
ing capacity of transgender women undergoing hormone 
therapy, it is still important to recognize that the biological 
factors underpinning athletic performance are unequivo-
cally established. It is, therefore, possible to make strong 
inferences and discuss potential performance implications 
despite the lack of direct sport-specific studies in athletes. 
Finally, since athlete safety could arguably be described 
as the immediate priority above considerations of fairness 
and inclusion, proper risk assessment should be conducted 
within respective sports that continue to include transgen-
der women in the female category.

If transgender women are restricted within or excluded 
from the female category of sport, the important question 
is whether or not this exclusion (or conditional exclusion) 
is necessary and proportionate to the goal of ensuring fair, 
safe and meaningful competition. Regardless of what the 
future will bring in terms of revised transgender policies, it 
is clear that different sports differ vastly in terms of physi-
ological determinants of success, which may create safety 
considerations and may alter the importance of retained 
performance advantages. Thus, we argue against universal 
guidelines for transgender athletes in sport and instead 
propose that each individual sports federation evaluate 
their own conditions for inclusivity, fairness and safety.
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